Jhe Excellence Key...

(M.Sc, B.Ed., M.Phill, P.hd)

CODE:0402-AG-6-23-24

RGET MATHEM

पजियन क्रमांक

REG.NO:-TMC -D/79/89/36

General Instructions:

1. This Question paper contains - five sections A, B, C, D and E. Each section is compulsory.

However, there are internal choices in some questions.

2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.

4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.

6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks

and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E

EXAMINATION 2023 - 24

Time : 3	B Hours Maximum Marks : 8	0
CLASS – XII MATHEMATICS		
Sr. No.	SECTION – A	Ma
	This section comprises of your short ensurer type questions (VSA) of 2 marks	rks
	This section comprises of very short answer type-questions (VSA) of 2 marks	
	each	
Q.1	$\begin{bmatrix} \cos \alpha & \sin \alpha \end{bmatrix} = \begin{bmatrix} 1 & 4 & \alpha di & 4 \end{bmatrix} \begin{bmatrix} k & 0 \end{bmatrix} d = \begin{bmatrix} 1 & 0 \end{bmatrix} d = \begin{bmatrix} 1 & 0 \end{bmatrix} d = \begin{bmatrix} 1 & 0 \end{bmatrix} d = \begin{bmatrix} 0 & 0 \end{bmatrix} d = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} d = \begin{bmatrix}$	1
	$\left \prod_{A} - \right - \sin \alpha \cos \alpha \left \begin{array}{c} \operatorname{and} A & \operatorname{uuy} & A - \\ 0 & k \end{array} \right $, then k is equal to	
	(a) 0 (b) 1 (c) $\sin \alpha \cos \alpha$ (d) $\cos 2\alpha$	
Q.2	Assume X, Y, Z, W and P are matrices of order $2 \times n$, $3 \times k$, $2 \times p$, $n \times 3$ and $p \times k$,	1
	respectively. The restriction on n, k and p so that PY + WY will be defined are:	-
	(A) k = 3 $n = n$ (B) k is arbitrary $n = 2$ (C) n is arbitrary $k = 3$ (D) $k = 2$ $n = 3$	
	(A) = (A)	
Q.3		1
	If $D = \begin{bmatrix} 2 & -1 & 0 \end{bmatrix}$ then $\begin{bmatrix} 4 & -6 & 0 \end{bmatrix}$ is equal to	
	$\prod D = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ then } \begin{bmatrix} 4 & -0 & 0 \\ 0 & 1 \end{bmatrix} \text{ sequal to}$	
	$ 3 \ 4 \ 5 $ $ 3 \ 12 \ 5 $	
	a 6D h 3D c 0 d 2D	

TMC/D/79/89

P.T.O. Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8, 8	r
If $f(x) = \begin{bmatrix} \frac{\pi}{2} \sin(\pi + x), \text{when } \frac{\pi}{2} < x < \pi \end{bmatrix}$, then (a) $f(x)$ is discontinuous at $x = \pi/2$ (b) $f(x)$ is continuous at $x = \pi/2$ (c) $f(x)$ is continuous at $x = 0$ (d)None of these Q.5 If θ be the angle between the vectors a and b and $ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b}$, then $\theta = \begin{bmatrix} 1 \\ a \end{bmatrix}$ (a) π (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$ (d) o Q.6 An integrating factor of the differential equation $(1 - x^2)\frac{dy}{dx} - xy = 1$, is (a) $-x$ (b) $-\frac{x}{(1 - x^2)}(c)\sqrt{(1 - x^2)}(d) \frac{1}{2}\log(1 - x^2)$ Q.7 For an objective function $Z = ax + by$, where $a, b > 0$; the corner points of the feasible region determined by a set of constraints (linear inequalities) are $(0, 20), (10, 10), (30, 30)$ and $(0, 40)$ is: (a) $b - 3a = 0$ (b) $a = 3b = c) a + 2b = 0$ (d) $2a - b = 0$ Q.8 If a line makes angles a, β, x, δ with four diagonals of a cube, then the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta$ is (a) $\frac{4}{3}$ (b) $1(c)$ $\frac{8}{3}$ (d) $\frac{7}{3}$ Q.7 The value of $\int_{-2}^{3} 1 - x^2 dx = 1$ (a) $\frac{1}{3}$ (b) $\frac{14}{3}(c)\frac{3}{3}(d) \frac{28}{3}$ Q.10 The roots of the equation $\begin{vmatrix} 1 + x & 1 & 1 \\ 1 & 1 + x & 1 \\ 1 & 1 & 1 + x \end{vmatrix} = 0$ are (a) $0, -3$ (b) $0, 0, -3$ (c) $0, 0, -3$ (d) None of these Q.11 In a factory which produces two products A and B, in manufacturing product A, the machine and the carpenter requires 3 hours each and in manufacturing product B, the machine and the carpenter requires 3 hours each and in manufacturing product A, the machine and the carpenter requires 3 hours each and in manufacturing to n A and B are Rs. 6 and Rs. 8 respectively. If profit is maximum by manufacturing x and y units of A and B type products respectively, then for the function $6x + 8y$, the constraints are (a) $x \ge 0, y \ge 0, 5x + 3y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 2y \le 50$ (c) $b \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 2y \le 50$ (c) $b \ge 0, $	Q.4	$\int x \sin x, \text{ when } 0 < x \le \frac{\pi}{2}$	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		If $f(x) = \begin{cases} \frac{\pi}{2} \sin(\pi + x), \text{ when } \frac{\pi}{2} < x < \pi \end{cases}$, then	
(a) $f(x)$ is discontinuous at $x = \pi/2$ (b) $f(x)$ is continuous at $x = \pi/2$ (c) $f(x)$ is continuous at $x = 0$ (d) None of these Q.5 If θ be the angle between the vectors a and b and $ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b}$, then $\theta =$ (a) π (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$ (d) o Q.6 An integrating factor of the differential equation $(1 - x^2)\frac{dy}{dx} - xy = 1$, is (a) $-x$ (b) $-\frac{x}{(1 - x^2)}(c)\sqrt{(1 - x^2)}(d) \frac{1}{2}\log(1 - x^2)$ Q.7 For an objective function $Z = ax + by$, where $a, b > 0$; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is: a) $b - 3a = 0$ b) $a = 3b$ c) $a + 2b = 0$ d) $2a - b = 0$ Q.8 If a line makes angles a, β, γ, δ with four diagonals of a cube, then the value of 1 $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta$ is (a) $\frac{4}{3}$ (b) $1(c)$ $\frac{8}{3}$ (d) $\frac{7}{3}$ Q.9 The value of $\int_{-2}^{2} 1 - x^2 dx =$ (a) $\frac{1}{3}$ (b) $\frac{14}{3}(c)_{3}^{7}(d) = \frac{28}{3}$ Q.10 Q.11 In a factory which produces two products A and B, in manufacturing product A, the machine and carpenter requires 3 hours each and in manufacturing product A, the machine and carpenter requires 3 hours each and in manufacturing product A, the machine and carpenter requires 3 hours respectively. The machine and carpenter works at most 80 hour and 50 hour park respectively. The machine and carpenter works 10 hour and 50 hour permised hour respectively. The machine and carpenter works 40 hour and 50 hour permet week respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively, the for the function 6 x + 8y, the constraints are (a) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 3y \le 50$ The profit on A and B type products respectively, then for the function $6x + 8y$, the constraints are (a) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 3y $		$\left(2^{\operatorname{out}(x+x))}, \operatorname{out}(x)\right) = 2^{\operatorname{out}(x+x)}$	
(c) $f(x)$ is continuous at $x = 0$ (d)None of these Q.5 If 0 be the angle between the vectors a and b and $ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b}$, then $\theta =$ (a) π (b) $\frac{\pi}{2} (c) \frac{\pi}{4} (d) o$ Q.6 An integrating factor of the differential equation $(1 - x^2) \frac{dy}{dx} - xy = 1$, is (a) $-x$ (b) $-\frac{x}{(1 - x^2)} (c) \sqrt{(1 - x^2)} (d) \frac{1}{2} \log(1 - x^2)$ Q.7 For an objective function $Z = ax + by$, where $a, b > 0$; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is: a) $b - 3a = 0$ b) $a = 3b$ c) $a + 2b = 0$ d) $2a - b = 0$ Q.8 If a line makes angles a, β, r, δ with four diagonals of a cube, then the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta$ is (a) $\frac{4}{3}$ (b) $1(c)$ $\frac{8}{3}$ (d) $\frac{7}{3}$ Q.9 The value of $\int_{-2}^{2} 1 - x^2 dx =$ (a) $\frac{1}{3}$ (b) $\frac{14}{3} (c) \frac{7}{3} (d) \frac{28}{3}$ Q.10 Q.10 The roots of the equation $\begin{vmatrix} 1+x & 1 & 1\\ 1 & 1+x & 1\\ 1 & 1\end{vmatrix} + x \begin{vmatrix} 1 \\ 1 \\ 0 \\ 0, -3 \\ 0 \end{vmatrix}$ (b) $0, 0, -3 \\ (c) 0, 0, 0, -3 \\ (d)$ None of these Q.11 In a factory which produces two products A and B, in manufacturing product A, the machine and tecarpenter requires 3 hour and 3 hour respectively. The machine and carpenter works at most 80 hour and 50 hour per weck respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively, then for the function 6 x + 8y, the constraints are (a) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 3y \le 50$		(a) $f(x)$ is discontinuous at $x = \pi/2$ (b) $f(x)$ is continuous at $x = \pi/2$	
Q.5 If θ be the angle between the vectors a and b and $ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b}$, then $\theta = 1$ (a) π (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$ (d) o Q.6 An integrating factor of the differential equation $(1 - x^2)\frac{dy}{dx} - xy = 1$, is (a) $-x$ (b) $-\frac{x}{(1 - x^2)}(c)\sqrt{(1 - x^2)}(d) \frac{1}{2}\log(1 - x^2)$ Q.7 For an objective function $Z = ax + by$, where $a, b > 0$; the corner points of the feasible region determined by a set of constraints (linear inequalities) are $(0, 20)$, $(10, 10)$, $(30, 30)$ and $(0, 40)$. The condition on a and b such that the maximum Z occurs at both the points $(30, 30)$ and $(0, 40)$ is: a) $b - 3a = 0$ b) $a = 3b$ c) $a + 2b = 0$ d) $2a - b = 0$ Q.8 If a line makes angles a, β, γ, δ with four diagonals of a cube, then the value of $1 \sin^2 a + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta$ is (a) $\frac{4}{3}$ (b) $1(c)$ $\frac{8}{3}$ (d) $\frac{7}{3}$ Q.9 The value of $\int_{-2}^{1} 1 - x^2 dx =$ (a) $\frac{1}{3}$ (b) $\frac{14}{3}(c)\frac{7}{3}(d)$ $\frac{28}{3}$ Q.10 Q.10 D.11 The roots of the equation $\begin{vmatrix} 1+x & 1 & 1\\ 1 & 1+x & 1\\ 1 & 1 & 1+x \end{vmatrix} = 0$ are (a) $0, -3$ (b) $0, 0, -3$ (c) $0, 0, 0, -3$ (d) None of these Q.11 In a factory which produces two products A and B, in manufacturing product A, the machine and te carpenter requires 3 hours each and in manufacturing product A, the machine and te carpenter requires 3 hour respectively. The machine and carpenter requires 3 hour and 3 hour respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively, then for the function $6 x + 8y$, the constraints are (a) $x \ge 0, y \ge 0.5x + 3y \le 80.3x + 2y \le 50$ (b) $x \ge 0, y \ge 0.5x + 3y \le 80.3x + 2y \le 50$ (c) $x \ge 0, y \ge 0.5x + 3y \le 80.3x + 3y \le 50$		(c) $f(x)$ is continuous at $x = 0$ (d)None of these	
Q.6 π	Q.5	If θ be the angle between the vectors a and b and $ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b}$, then $\theta =$	1
Q.6An integrating factor of the differential equation $(1 - x^2)\frac{dy}{dx} - xy = 1$, is1(a) $-x$ (b) $-\frac{x}{(1 - x^2)}(c)\sqrt{(1 - x^2)}(d)$ $\frac{1}{2}\log(1 - x^2)$ 1Q.7For an objective function $Z = ax + by$, where $a, b > 0$; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is:1a) $b - 3a = 0$ b) $a = 3b$ c) $a + 2b = 0$ d) $2a - b = 0$ 21Q.8If a line makes angles $\alpha, \beta, \gamma, \delta$ with four diagonals of a cube, then the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta$ is1(a) $\frac{4}{3}$ (b) $1(c)$ $\frac{8}{3}$ (d) $\frac{7}{3}$ 1Q.9The value of $\int_{-2}^{1} 1 - x^2 dx =$ 1(a) $0, -3$ (b) $0, 0, -3$ (c)0, $0, 0, -3$ (d) None of these1In a factory which produces two products A and B, in manufacturing product A, the machine and carpenter requires 3 hours each and in manufacturing product B, the machine and carpenter requires 3 hour sech and a hour respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively. Itp profit is maximum by manufacturing x and y units of A and B type products respectively, then for the function $6x + 8y$, the constraints are(a) $x \ge 0, y \ge 0, 5x + 3y \le 80, 3x + 2y \le 50$ TOUNTERE		$\frac{\pi}{2}$ () $\frac{\pi}{4}$ ()	
An integrating factor of the differential equation $(1 - x^2)\frac{dy}{dx} - xy = 1$, is (a) $-x$ (b) $-\frac{x}{(1-x^2)}(c)\sqrt{(1-x^2)}(d)\frac{1}{2}\log(1-x^2)$ Q.7 For an objective function $Z = ax + by$, where $a, b > 0$; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is: a) $b - 3a = 0$ b) $a = 3b$ c) $a + 2b = 0$ d) $2a - b = 0$ Q.8 If a line makes angles a, β, γ, δ with four diagonals of a cube, then the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta$ is (a) $\frac{4}{3}$ (b) $1(c)$ $\frac{8}{3}$ (d) $\frac{7}{3}$ Q.9 The value of $\int_{-2}^{1} 1-x^2 dx =$ (a) $\frac{1}{3}$ (b) $\frac{14}{3}(c)\frac{7}{3}(d) \frac{28}{3}$ Q.10 The roots of the equation $\begin{vmatrix} 1+x & 1 & 1\\ 1 & 1+x & 1\\ 1 & 1+x \end{vmatrix} = 0$ are (a) $0, -3$ (b) $0, 0, -3$ (c) $0, 0, 0, -3$ (d) None of these Q.11 In a factory which produces two products A and B, in manufacturing product A, the machine and carpenter requires 3 hours each and in manufacturing product B, the machine and carpenter requires 3 hours each and in manufacturing product B, the machine and carpenter requires 3 hours each and in manufacturing the product B, the machine and carpenter requires 3 hour sech and in manufacturing x and y units of A and B type products respectively. If profit is maximum by manufacturing x and y units of A and B type products respectively, then for the function $6x + 8y$, the constraints are (a) $x \ge 0, y \ge 0, 5x + 3y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 5x + 5y \le 80, 3x + 2y \le 50$	0.6	(a) (b) (c) (d) (d) (d)	
Q.7(a) $-x$ (b) $-\frac{x}{(1-x^2)}$ (c) $\sqrt{(1-x^2)}$ (d) $\frac{1}{2}\log(1-x^2)$ Q.7For an objective function $Z = ax + by$, where $a, b > 0$; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is: a) $b - 3a = 0$ 1Q.8If a line makes angles a, β, γ, δ with four diagonals of a cube, then the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta$ is (a) $\frac{4}{3}$ 1Q.9The value of $\int_{-2}^{3} 1-x^2 dx =$ (a) $\frac{1}{3}$ 1(a) $\frac{1}{3}$ (b) $\frac{14}{3}$ (c) $\frac{7}{3}$ Q.10The roots of the equation $\begin{vmatrix} 1+x & 1 & 1\\ 1 & 1+x & 1\\ 1 & 1 & 1+x \end{vmatrix} = 0$ are (a) $0, -3$ 1Q.11In a factory which produces two products A and B, in manufacturing product A, the machine and the carpenter requires 3 hours each and in manufacturing product B, the machine and carpenter requires 5 hour and 3 hour respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively. It profit is maximum by manufacturing x and y units of A and B type products respectively, then for the function $6 x + 8y$, the constraints are (a) $x \ge 0, y \ge 0, 5x + 3y \le 80, 3x + 2y \le 50$ TOURDERE	Q.0	An integrating factor of the differential equation $(1 - x^2)\frac{dy}{dx} - xy = 1$, is	1
Q.7For an objective function $Z = ax + by$, where $a, b > 0$; the corner points of the feasible region determined by a set of constraints (linear inequalities) are $(0, 20)$, $(10, 10)$, $(30, 30)$ and $(0, 40)$. The condition on a and b such that the maximum Z occurs at both the points $(30, 30)$ and $(0, 40)$ is: a) $b - 3a = 0$ b) $a = 3b$ c) $a + 2b = 0$ d) $2a - b = 0$ 1Q.8If a line makes angles a, β, γ, δ with four diagonals of a cube, then the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta$ is1Q.9The value of $\int_{-2}^{3} 1 - x^2 dx =$ (a) $\frac{1}{3}$ (b) $\frac{14}{3}(c)\frac{7}{3}(d)$ $\frac{28}{3}$ 1Q.10If a factory which produces two products A and B, in manufacturing product A, the machine and the carpenter requires 3 hours each and in manufacturing product A, the machine and tearpenter requires 5 hour and 3 hour respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively. If profit is maximum by manufacturing x and y units of A and B type products respectively, then for the function $6 x + 8y$, the constraints are (a) $x \ge 0, y \ge 0, 5x + 3y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 5x + 3y \le 80, 3x + 2y \le 50$ PTOCONESE		(a) $-x$ (b) $-\frac{x}{(1-x^2)}$ (c) $\sqrt{(1-x^2)}$ (d) $\frac{1}{2}\log(1-x^2)$	
Q.8If a line makes angles $\alpha, \beta, \gamma, \delta$ with four diagonals of a cube, then the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta$ is1(a) $\frac{4}{3}$ (b) 1(c) $\frac{8}{3}$ (d) $\frac{7}{3}$ (b) $\frac{7}{3}$ (c) $\frac{1}{3}$ (c) $\frac{7}{3}$ (c) $$	Q.7	For an objective function $Z = ax + by$, where $a, b > 0$; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is: a) $b - 3a = 0$ b) $a = 3b$ c) $a + 2b = 0$ d) $2a - b = 0$	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q.8	If a line makes angles $\alpha, \beta, \gamma, \delta$ with four diagonals of a cube, then the value of	1
(a) $\frac{4}{3}$ (b)1(c) $\frac{8}{3}$ (d) $\frac{7}{3}$ Q.9The value of $\int_{-2}^{3} 1-x^2 dx =$ 1(a) $\frac{1}{3}$ (b) $\frac{14}{3}$ (c) $\frac{7}{3}$ (d) $\frac{28}{3}$ Q.10The roots of the equation $\begin{vmatrix} 1+x & 1 & 1\\ 1 & 1+x & 1\\ 1 & 1 & 1+x \end{vmatrix} = 0$ are1(a) $0, -3$ (b)0, 0, -3 (c)0, 0, 0, -3 (d)None of theseQ.11In a factory which produces two products A and B, in manufacturing product A, the machine and the carpenter requires 3 hours each and in manufacturing product B, the machine and carpenter requires 5 hour and 3 hour respectively. The machine and carpenter requires 5 hour and 50 hour per week respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively. If profit is maximum by manufacturing x and y units of A and B type products respectively, then for the function 6 x + 8y, the constraints are (a) $x \ge 0, y \ge 0, 5x + 3y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 3y \le 50$ PTO		$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta$ is	
Q.9The value of $\int_{-2}^{3} 1-x^2 dx =$ 1(a) $\frac{1}{3}$ (b) $\frac{14}{3}$ (c) $\frac{7}{3}$ (d) $\frac{28}{3}$ 1Q.10The roots of the equation $\begin{vmatrix} 1+x & 1 & 1\\ 1 & 1+x & 1\\ 1 & 1 & 1+x \end{vmatrix} = 0$ are1(a) $0, -3$ (b) $0, 0, -3$ (c) $0, 0, 0, -3$ (d) None of these1Q.11In a factory which produces two products A and B, in manufacturing product A, the machine and the carpenter requires 3 hours each and in manufacturing product B, the machine and carpenter requires 5 hour and 3 hour respectively. The machine and carpenter works at most 80 hour and 50 hour per week respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively. If profit is maximum by manufacturing x and y units of A and B type products respectively, then for the function $6x + 8y$, the constraints are (a) $x \ge 0, y \ge 0, 5x + 3y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 3y \le 50$ PTO		(a) $\frac{4}{3}$ (b) 1(c) $\frac{8}{3}$ (d) $\frac{7}{3}$	
Q.10 $(a) = \frac{1}{3}$ $(b) \frac{14}{3} (c) \frac{7}{3} (d) = \frac{28}{3}$ Q.10The roots of the equation $\begin{vmatrix} 1+x & 1 & 1\\ 1 & 1+x & 1\\ 1 & 1 & 1+x \end{vmatrix} = 0$ are1(a) $0, -3$ (b) $0, 0, -3$ (c) $0, 0, 0, -3$ (d) None of theseQ.11In a factory which produces two products A and B, in manufacturing product A, the machine and the carpenter requires 3 hours each and in manufacturing product B, the machine and carpenter requires 5 hour and 3 hour respectively. The machine and carpenter works at most 80 hour and 50 hour per week respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively. If profit is maximum by manufacturing x and y units of A and B type products respectively, then for the function $6x + 8y$, the constraints are (a) $x \ge 0, y \ge 0, 5x + 3y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 3y \le 50$ PTO	Q.9	The value of $\int_{-\infty}^{3} 1-x^2 dx =$	1
Q.10 (a) (b) (b) (b) (b) (b) (b) (c) (c) (d)		$(a) = \frac{1}{1}$ $(b)^{14} (c)^{7} (d) = \frac{28}{28}$	
Q.10The roots of the equation $\begin{vmatrix} 1+x & 1 & 1\\ 1 & 1+x & 1\\ 1 & 1 & 1+x \end{vmatrix} = 0$ are1(a) $0, -3$ (b) $0, 0, -3$ (c) $0, 0, 0, -3$ (d)None of theseQ.11In a factory which produces two products A and B, in manufacturing product A, the machine and the carpenter requires 3 hours each and in manufacturing product B, the machine and carpenter requires 5 hour and 3 hour respectively. The machine and carpenter works at most 80 hour and 50 hour per week respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively. If profit is maximum by manufacturing x and y units of A and B type products respectively, then for the function $6 x + 8y$, the constraints are (a) $x \ge 0, y \ge 0, 5x + 3y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 3y \le 50$ BTO	0.10	(a) $\frac{1}{3}$ (b) $\frac{1}{3}$ (c) $\frac{1}{3}$ (d) $\frac{1}{3}$	
The roots of the equation $1 1+x 1$ $= 0$ are(a) $0, -3$ (b) $0, 0, -3$ (c) $0, 0, 0, -3$ (d)None of theseQ.11In a factory which produces two products A and B, in manufacturing product A, the machine and the carpenter requires 3 hours each and in manufacturing product B, the machine and carpenter requires 5 hour and 3 hour respectively. The machine and carpenter works at most 80 hour and 50 hour per week respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively. If profit is maximum by manufacturing x and y units of A and B type products respectively, then for the function $6 x + 8y$, the constraints are (a) $x \ge 0, y \ge 0, 5x + 3y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 3y \le 50$ PTO	Q.10	$\begin{vmatrix} 1+x & 1 & 1 \\ 1 & 1+x & 1 \\ \end{vmatrix}$	1
(a) $0, -3$ (b) $0, 0, -3$ (c) $0, 0, 0, -3$ (d) None of these Q.11 In a factory which produces two products A and B, in manufacturing product A, the machine and the carpenter requires 3 hours each and in manufacturing product B, the machine and carpenter requires 5 hour and 3 hour respectively. The machine and carpenter works at most 80 hour and 50 hour per week respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively. If profit is maximum by manufacturing x and y units of A and B type products respectively, then for the function $6 x + 8y$, the constraints are (a) $x \ge 0, y \ge 0, 5x + 3y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 3y \le 50$		The roots of the equation $\begin{vmatrix} 1 & 1+x & 1 \\ 1 & 1 & 1+x \end{vmatrix} = 0$ are	
Q.11In a factory which produces two products A and B, in manufacturing product A, the machine and the carpenter requires 3 hours each and in manufacturing product B, the machine and carpenter requires 5 hour and 3 hour respectively. The machine and carpenter works at most 80 hour and 50 hour per week respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively. If profit is maximum by manufacturing x and y units of A and B type products respectively, then for the function 6 x + 8y, the constraints are (a) $x \ge 0, y \ge 0, 5x + 3y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 3y \le 50$ PTO		(a) $0, -3$ (b) $0, 0, -3$ (c) $0, 0, -3$ (d) None of these	
machine and the carpenter requires 3 hours each and in manufacturing product B, the machine and carpenter requires 5 hour and 3 hour respectively. The machine and carpenter works at most 80 hour and 50 hour per week respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively. If profit is maximum by manufacturing x and y units of A and B type products respectively, then for the function $6 x + 8y$, the constraints are (a) $x \ge 0, y \ge 0, 5x + 3y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0, 3x + 5y \le 80, 3x + 3y \le 50$	Q.11	In a factory which produces two products A and B, in manufacturing product A, the	1
$[0] X \le 0, y \le 0, 3X + 3y \ge 00, 3X + 3y \ge 30$ TMC/D/79/89 2 PT 0		machine and the carpenter requires 3 hours each and in manufacturing product B, the machine and carpenter requires 5 hour and 3 hour respectively. The machine and carpenter works at most 80 hour and 50 hour per week respectively. The profit on A and B are Rs. 6 and Rs. 8 respectively. If profit is maximum by manufacturing x and y units of A and B type products respectively, then for the function $6 x + 8y$, the constraints are (a) $x \ge 0, y \ge 0.5x + 3y \le 80, 3x + 2y \le 50$ (b) $x \ge 0, y \ge 0.3x + 5y \le 80, 3x + 2y \le 50$	1
1 WO / D / 7 / 67	TMC/F	$p_{1}(0) = 0, y = 0, y = 0, y = 00, y = 00, y = 00, y = 00, y = 0, y =$	<u> </u>

TMC/D/79/89

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

	(c) $x \ge 0, y \ge 0, 3x + 5y \ge 80, 2x + 3y \ge 50$		
0.10	(d) $x \ge 0, y \ge 0, 5x + 3y \ge 80, 3x + 2y \ge 50$		
Q.12	If the position vectors of three points A, B and C are respectively $i + j + k$, $2i + 3j - 4k$ and $7i + 4j + 9k$, then the unit vector to the plane containing the triangle ABC is	1	
	31i - 38j - 9k $31i + 18j + 9k$		
	(a) $31i - 18j - 9k(b) \sqrt{2486}$ (c) $\sqrt{2486}$ (d) None of these		
Q.13	If I_3 is the identity matrix of order 3, then Cofactor of I is	1	
	(a) 0 (b) $3I_3$ (c) I_3 (d) Does not exist		
Q.14	Probability that A speaks truth is 4/5 . A coin is tossed. A reports that a head appears. The probability that actually there was head is A. 4/5 B.1/2 C.1/5 D.2/5	1	
Q.15	The solution of the equation $\frac{dy}{dx} = \frac{y}{x} \left(\log \frac{y}{x} + 1 \right)$ is	1	
	$\frac{1}{2} \frac{dx}{dx} = \frac{1}{x} $		
	(a) $\log \frac{1}{x} = cx$ (b) $\frac{1}{x} = \log y + c$ (c) $y = \log y + 1$ (d) $y = xy + c$		
Q.16	The area of the triangle having vertices as $\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$, $-2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$, $4\mathbf{i} - 7\mathbf{j} + 7\mathbf{k}$ is (a) $26(\mathbf{b})11(\mathbf{c})$ 36 (d) 0	1	
Q.17	If A=R - {3}, B=R-{1}. Let $f: A \rightarrow B$ be defined by $f(x) = \frac{x-2}{x-3}$, $\forall x \in A$, then find x if	1	
	$f^{-1}(x) = 4$		
	(a) 2 (b) - 2 (c) Does not exist because f is not bijective (d) none of these		
Q.18	The length of the perpendicular drawn from the point (5, 4, -1) on the line $\frac{x-1}{2} = \frac{y}{9} = \frac{z}{5}$ is	1	
	(a) $\sqrt{\frac{110}{2109}}$ (b) $\sqrt{\frac{2109}{110}}$ (c) $\frac{2109}{110}$ (d) 54 (b) $\sqrt{\frac{2109}{110}}$		
	ASSERTION-REASON BASED QUESTIONS		
	In the following questions, a statement of assertion (A) is followed by a statement of		
	Reason (R). Choose the correct answer out of the following choices. (a) Both A and R are true and R is the correct explanation of A. (b) Both A and R are true but R is		
	not the correct explanation of A. (c) A is true but R is false. (d) A is false but R is		
	true.		
Q.19	Assertion (A): The function $f(x) \tan x - x$ always increases .	1	
	Reason (R): The value(s) of x for which $f'(x) > 0$, $f(x)$ is increasing; and the		
	value(s) of x for which $f'(x) < 0$, $f(x)$ is decreasing.		
TMC/E	0/79/89 3 P.T.O.		

Visit us at www.agyatgupta.com

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

	Visit us at www.agyatgupta.com			
Q.20	Assertion (A): The function $f(x) = \sin\left(\log(x + \sqrt{x^2 + 1})\right)$ is even function.	1		
	Reason (R) : (i) $f(-x) = f(x)$ therefore $f(x)$ is even function.			
	(i) $f(-x) = -f(x)$ therefore $f(x)$ is odd function.			
	SECTION – B			
	This section comprises of very short answer type-questions (VSA) of 2 marks each			
Q.21	Find all point of discontinuity of f, where f is defined as following : $f(x) = \begin{cases} x +3 & ifx \le -3 \\ -2x & -3 < x < 3 \\ 6x+2 & ifx \ge 3 \end{cases}.$	2		
Q.22	Prove that $: \sin\left(2\tan^{-1}\sqrt{\frac{1-x}{1+x}}\right) = \sqrt{1-x^2}$	2		
	OR			
	Reduced in simplest form $\tan^{-1}\left(\frac{7ax}{a^2-12x^2}\right)$.			
Q.23	The two vector $\hat{j} + \hat{k}$ and $3\hat{i} - \hat{j} + 4\hat{k}$ represent the two side vectors \vec{AB} and \vec{AC} respectively of triangle ABC. Find the length of the median through A.	2		
Q.24	Find the interval in which $f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$ is (a) strictly increasing (b)	2		
	strictly decreasing			
	OR			
	If the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$, where $a > 0$ attains its maximum			
	and minimum at p and q respectively such that $p^2 = q$, then find the value of a.			
Q.25	Determine the intervals in which the function f given by $f(x) = \log(1+x) - \frac{2x}{2+x}, x \neq -2$ Is increasing or decreasing.	2		
	OR			
	Find the interval in which $f(x) = \frac{4\sin x - 2x - x\cos x}{2 + \cos x}$ on $(0, 2\pi)$ is (a) increasing (b)			
	decreasing.			
	SECTION – C			
0.26	(This section comprises of short answer type questions (SA) of 3 marks each) x'(-2)			
Q.20	Find: $\int \frac{e^{-}(x-3)}{(x-1)^3} dx$.	3		
Q.27	Evaluate $\int \frac{x \sin^{-1}(x^2)}{\sqrt{1-x^4}} dx$	3		
TMC/E	D/79/89 4 P.T.O. Target Mathematics by- Dr.Agyat Gupta			

visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com

			OR	•		
	Evaluate: $\int_0^{\pi/4} \log(1 + \tan \theta) d\theta$.					
Q.28	A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is 3				3	
	tossed twice, find the probability distribution of number of tails.					
			OR			
	If A and I	B are two events s	such that $2P(A) = P(B) =$	= 5/13 & P(A/B) = 2/5, find	$P(A \cup B)$.	
Q.29	Solve $\frac{dy}{dx}$	$\frac{y}{2} + y \sec^2 x = \tan x \sec^2 x$	$ec^2 x$.			3
			OR			
	The solut	ion of the differer	tial equation $(3xy + y^2)$	$)dx + (x^2 + xy)dy = 0.$		
Q.30	If $x^m y^n = (x+y)^{m+n}$, prove that $\frac{dy}{dx} = \frac{y}{x}$.				3	
Q.31	There is a factory located at each of the two places P & Q. From these locations, a certain commodity is delivered to each of the three depots situated at A, B & C. The weekly requirements of the depots 5, 5 & 4 units of commodity while the production capacity of the factories at P & Q are respectively 8 & 6 units. The cost of transportation per unit is given below. Formulate the above L.P.P. mathematically to determine how many units should be transported from each factory to each depot in order that the transportation cost is minimum.				3	
	0 J	C (DST (in Rs)	r		
		A	В	С	_	
	Р	1 6	1 0	1 5		
	Q	1 0	1 2	1 0		
			SECTION - D			
	(This sec	tion comprises of	f long answer-type qu	uestions (LA) of 5 marks	s each)	
Q.32	Show that	t the lines $x - 1_{-}$	y - 1 , 1 - 0 and x -	4 - z + 1 y = 0 intersect	each other.	5
		$\frac{3}{3}$	-1,2+1=0	$\frac{1}{3}$, y = 0 more con		
	Also find	their point of inte	ersection.			
	Prove the	t the lines whose	UK direction cosines are a	x_{1}	fmn + onl	
			(1) 1° 1° 1° 1°	$\int_{a}^{b} \int_{a}^{b} \int_{a$, 1111 ' gin	
	+ nim	= 0 are	(1)perpendicular 1	$I \qquad \frac{a}{a} + \frac{b}{b} + \frac{b}{c} = 0 \qquad (II)p$	arallel 11	
	$a^{2} f^{2} +$	$b^2 g^2 + c^2 h^2$	-2(bcgh + cahf +	abfg) = 0.		
Q.33	Using integration find the area of the region bounded by the circle $x^2 + y^2 = 32$, x axis and the line $x = y$ in the first quadrant.			5		
Q.34	Show the	t the relation D in	the set $\Lambda = \int 1 \ 2 \ 3 \ 4$	5) given by $\mathbf{R} = f(a, b)$.	a-h is	5
	avon) is a	une relation K III	ation Show that all the	$\int g(a, b)$:	$ $ ^{μ} \vee $ $ 18 related to	
		in equivalence fel		(1, 3, 3) at		L
TMC/D	0/79/89		5	P.T.O.		

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

	each other and the elements of $\{2, 4\}$ are related to each other. But no elements of $\{1, 3, 5\}$ is related to any elements of $\{2, 4\}$	
	OR	
	Show that the function $f: N \to N$, given by $f(x) = x - (-1)^x$, is a bijection	
Q.35	If $A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{bmatrix}$ are two square matrices, find AB and hence	5
	solve the system of linear equation $:x - 2y = 10$, $2x + y + 3z = 8 \& -2y + z = 7$.	
	SECTION – E	
	(This section comprises of 3 case study / passage – based questions of 4 marks each with two sub parts (i),(ii),(iii) of marks 1, 1, 2 respectively. The third case study question has two sub – parts of 2 marks each.)	
Q.36	Case Study based-1	
	A & B appear for an interview for two vacancies in the same post . The probability	
	of A selection is $\frac{1}{6}$ and B is $\frac{1}{4}$. Assuming the two events as independent find the	
	probability of	
i.	Both students passing the examination.	1
ii.	Only one of them is selected .	1
iii.	at least one of them is selected.	2
	OR	
	none of them is selected	
Q.37	Case Study based-3	
	Shobhit's father wants to construct a rectangular garden using a brick wall on one side of the garden and wire fencing for the other three sides as shown in figure. He has 200 ft of wire fencing.	
	Based on the above information, answer the following questions.	
i.	If x denote the length of the side of the garden perpendicular to the brick wall and y denote the length of the side parallel to the brick wall, then find the relation representing total amount of fencing wire. (a) $x + 2y = 150$ (b) $x + 2y = 50$ (c) $y + 2x = 200$ (d) $y + 2x = 100$	1
	$(u) \cdots - j = 100 (0) \cdots - j = 00 (0) j + 2x - 200 (u) j + 2x - 100$	
TMC/E	0/79/89 6 P.T.O.	

Visit us at www.agyatgupta.com

6 P.T.O. **Target Mathematics by- Dr.Agyat Gupta** visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com				
ii.	Maximum are of garden will be	1		
	(a) 2500 sq. ft (b) 4000 sq. ft (c) 5000 sq. ft (d) 6000 sq. ft	-		
iii.	Area of the garden as a function of x, say $A(x)$, can be represented as	2		
	(a) $200 + 2x^2$ (b) $x - 2x^2$ (c) $200x - 2x^2$ (d) $200 - x^2$			
	OR			
	Maximum value of $A(x)$ occurs at x equals			
	(a) 50 ft (b) 30 ft (c) 26 ft (d) 31 ft			
Q.38	CASE STUDY- 3			
	Two skew lines $\frac{x-6}{3} = -(y-7) = (z-4)$ and $\frac{x}{-3} = \frac{y+9}{2} = \frac{z-2}{4}$. Hence find the			
	shortest distance between the given lines.			
i.	Find the points on the line which are nearest to each other.	2		
ii.	Find the shortest distance between the given lines.	2		

	"मेहनत करो, सफलता खुद आपके पास आएगी।"			

7 P.T.O. **Target Mathematics by- Dr.Agyat Gupta** visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)